Anaerobic Oxidation of Ethane, Propane, and Butane by Marine Microbes: A Mini Review

نویسندگان

  • Rajesh Singh
  • Michael S. Guzman
  • Arpita Bose
چکیده

The deep ocean and its sediments are a continuous source of non-methane short-chain alkanes (SCAs) including ethane, propane, and butane. Their high global warming potential, and contribution to local carbon and sulfur budgets has drawn significant scientific attention. Importantly, microbes can use gaseous alkanes and oxidize them to CO2, thus acting as effective biofilters. A relative decrease of these gases with a concomitant 13C enrichment of propane and n-butane in interstitial waters vs. the source suggests microbial anaerobic oxidation. The reported uncoupling of sulfate-reduction (SR) from anaerobic methane oxidation supports their microbial consumption. To date, strain BuS5 isolated from the sediments of Guaymas Basin, Gulf of California, is the only pure culture that can anaerobically degrade propane and n-butane. This organism belongs to a metabolically diverse cluster within the Deltaproteobacteria called Desulfosarcina/Desulfococcus. Other phylotypes involved in gaseous alkane degradation were identified based on stable-isotope labeling and fluorescence in-situ hybridization. A novel syntrophic association of the archaeal genus, Candidatus Syntrophoarchaeum, and a thermophilic SR bacterium, HotSeep-1 was recently discovered from the Guaymas basin, Gulf of California that can anaerobically oxidize n-butane. Strikingly, metagenomic data and the draft genomes of ca. Syntrophoarchaeum suggest that this organism uses a novel mechanism for n-butane oxidation, distinct from the well-established fumarate addition mechanism. These recent findings indicate that a lot remains to be understood about our understanding of anaerobic SCA degradation. This mini-review summarizes our current understanding of microbial anaerobic SCA degradation, and provides an outlook for future research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To...

متن کامل

The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain al...

متن کامل

Isolation of Two Novel Marine Ethylene-Assimilating Bacteria, Haliea Species ETY-M and ETY-NAG, Containing Particulate Methane Monooxygenase-like Genes

Two novel ethylene-assimilating bacteria, strains ETY-M and ETY-NAG, were isolated from seawater around Japan. The characteristics of both strains were investigated, and phylogenetic analyses of their 16S rRNA gene sequences showed that they belonged to the genus Haliea. In C1-4 gaseous hydrocarbons, both strains grew only on ethylene, but degraded ethane, propylene, and propane in addition to ...

متن کامل

Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporati...

متن کامل

A Comparison of Ceria and Sm-Doped Ceria for Hydrocarbon Oxidation Reactions

The oxidation of methane, ethane, propane, and n-butane has been studied over CeO2 and Ce0.8Sm0.2Ox (SDC) catalysts. The rates for methane and ethane were found to be indistinguishable over the two catalysts, while the rates for propane and n-butane were much higher on ceria compared to SDC. The difference between n-butane oxidation over ceria and SDC is shown to result from a low-temperature r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017